MATH3210 - SPRING 2024 - SECTION 004

HOMEWORK 10

Problem 1. Prove the divergence criteria of the comparison test. That is, show that if $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequences such that $a_{n} \geq b_{n} \geq 0$ for every n, and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges. Use the following scheme: Let $t_{m}=\sum_{n=1}^{m} b_{n}$ be the sequence of partial sums for b_{n}. Show that if $\sum_{n=1}^{\infty} b_{n}$ diverges, then t_{m} must diverge to infinity. Then show that the sequence t_{m} diverges to ∞, then so does $s_{m}=\sum_{n=1}^{m} a_{n}$.

Solution. We will first show that if $\sum_{n=1}^{\infty} b_{n}$ diverges, then the partial sums $t_{m}=\sum_{n=1}^{m} b_{n}$ diverge to infinity. Note that t_{m} is increasing since $b_{n} \geq 0$ for all n. Therefore, by the monotone convergence theorem and because t_{m} diverges, t_{m} is unbounded. Since it is increasing and unbounded, it diverges to ∞.

We claim that the sequence of partial sums $s_{m}=\sum_{n=1}^{\infty} a_{n}$ also diverges to infinity. Indeed, let $B>0$. Since t_{m} diverges to ∞, there exists $M \in \mathbb{N}$ such that if $m \geq M, t_{m}>B$. Then if $m \geq M$, $s_{m} \geq t_{m}>B$, so s_{m} diverges to ∞.

Problem 2. Determine whether the series converges or diverges. Prove that your answer is correct using the following tools only: the term test, the comparison test, the ratio test, and the integral test.
(a) $\sum_{n=1}^{\infty} \cos (n)$
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$
(c) $\sum_{n=1}^{\infty} \frac{n^{8}}{n!}$
(d) $\sum_{n=1}^{\infty} \frac{n^{3}+3^{n}}{5^{n}}$

Solution.
(a) We claim that the series diverges. Indeed, since $\cos (n)$ does not converge to 0 , it diverges by the term test.
(b) We claim that the series converges. Indeed, we use the comparison test with $b_{n}=\frac{1}{n^{2}}$. Notice that b_{n} converges since it is a p-series with $p>1$, and that $0<\frac{1}{n^{2}+1}<\frac{1}{n^{2}}$. Therefore, by the comparison test, $\frac{1}{n^{2}+1}$ converges.
(c) We claim that the series converges. We apply the ratio test, which concludes convergence as long as $\lim \sup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$. Notice that

$$
\lim _{n \rightarrow \infty} \frac{(n+1)^{8}}{(n+1)!} \cdot \frac{n!}{n^{8}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{8} \cdot \frac{1}{n+1}=1 \cdot 0=0
$$

(d) We claim that the series converges. We apply the ratio test, which concludes convergence as long as $\lim \sup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$. Notice that

$$
\lim _{n \rightarrow \infty} \frac{(n+1)^{3}+3^{n+1}}{5^{n+1}} \cdot \frac{5^{n}}{n^{3}+3^{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{3} / 3^{n}+3}{5\left(n^{3} / 3^{n}+1\right)}=\frac{0+3}{5(0+1)}=3 / 5
$$

Problem 3. Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ be a sequence of positive functions such that $\sum_{n=1}^{\infty} f_{n}(0)$ converges, and each f_{n} is L_{n}-Lipschitz. Show that if $L=\sum_{n=1}^{\infty} L_{n}$ converges, then $\sum_{n=1}^{\infty} f_{n}$ converges uniformly to an L-Lipschitz function.

Solution. We claim that for every $x \in[a, b]$, the sequence $\sum_{n=1}^{m} f_{n}(x)$ is Cauchy. Indeed, fix $\varepsilon>0$. Choose an N such that $\sum_{n=N}^{\infty} L_{n}<\frac{\varepsilon}{2(b-a)}$ and $\sum_{n=N}^{\infty} f_{n}(a)<\varepsilon / 2$. Such an N exists since the sequence of partial sums is Cauchy for each sequence. Then if $m_{2}, m_{1} \geq N$,

$$
\begin{aligned}
\left|\sum_{n=1}^{m_{2}} f_{n}(x)-\sum_{n=1}^{m_{1}} f_{n}(x)\right| \leq \mid & \sum_{n=m_{1}+1}^{m_{2}} f_{n}(a)+f_{n}(x)-f_{n}(a)\left|\leq \sum_{n=m_{1}+1}^{m_{2}}\right| f_{n}(a)\left|+\left|f_{n}(x)-f_{n}(a)\right|\right. \\
& \leq \sum_{n=m_{1}+1}^{\infty}\left|f_{n}(a)\right|+\sum_{n=m_{1}+1}^{\infty} L_{n}|x-a|<\varepsilon / 2+\left|\frac{x-a}{b-a}\right| \cdot \varepsilon / 2<\varepsilon
\end{aligned}
$$

Thus, by the topological completeness theorem, for each x, the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges. Since the choice of N does not depend on x for the Cauchy property, the functions f_{n} coverge uniformly to a function f. Furthermore,

$$
|f(x)-f(y)|=\left|\sum_{n=1}^{\infty} f_{n}(x)-f_{n}(y)\right| \leq \sum_{n=1}^{\infty}\left|f_{n}(x)-f_{n}(y)\right| \leq \sum_{n=1}^{\infty} L_{n}|x-y|=L|x-y|
$$

So f is L-Lipschitz.
Problem 4. Let $f(x)=x e^{x}$. Find a number N such that the Taylor approximation of order N is within .1 of $f(x)$ on the interval $[0,1]$. [Hint: First, find and prove a formula for $f^{(k)}(x)$ by induction, then bound $f^{(k)}(x)$ on $[0,1]$ using this formula by a number depending on $\left.k\right]$

Solution. We first claim that $f^{(k)}(x)=k e^{x}+x e^{x}$. we show it by induction. It holds for $k=0$, since $f^{(0)}(x)=f(x)=0 \cdot e^{x}+x e^{x}$. If $f^{(k)}(x)=k e^{x}+x e^{x}$, then

$$
f^{(k+1)}(x)=\left(k e^{x}+x e^{x}\right)^{\prime}=k e^{x}+\left(e^{x}+x e^{x}\right)=(k+1) e^{x}+x e^{x}
$$

It follows that on $\left.[0,1], f^{(k+1)} x\right) \leq(k+1) e$. Hence, the remainder term of the N th Taylor polynomial is

$$
\left|R_{N}(x)\right|=\frac{\left|f^{(N+1)}(c)\right|}{(N+1)!} \cdot|x-0|^{N+1} \leq \frac{(N+1) e}{(N+1)!}=\frac{e}{N!}
$$

Taking $N=5$ yields that $e / 5!<3 /(5 \cdot 4 \cdot 3 \cdot 2)=\frac{1}{40}<1 / 10$, so the 5 th Taylor approximation is within .1 on $[0,1]$.

