MATH3210 - SPRING 2024 - SECTION 004

HOMEWORK 10

Problem 1. Prove the divergence criteria of the comparison test. That is, show that if $\{a_n\}$ and $\{b_n\}$ are sequences such that $a_n \ge b_n \ge 0$ for every n, and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges. Use the following scheme: Let $t_m = \sum_{n=1}^m b_n$ be the sequence of partial sums for b_n . Show that if $\sum_{n=1}^{\infty} b_n$ diverges, then t_m must diverge to infinity. Then show that the sequence t_m diverges to ∞ , then so does $s_m = \sum_{n=1}^m a_n$.

Solution. We will first show that if $\sum_{n=1}^{\infty} b_n$ diverges, then the partial sums $t_m = \sum_{n=1}^{m} b_n$ diverge to infinity. Note that t_m is increasing since $b_n \ge 0$ for all n. Therefore, by the monotone convergence theorem and because t_m diverges, t_m is unbounded. Since it is increasing and unbounded, it diverges to ∞ .

We claim that the sequence of partial sums $s_m = \sum_{n=1}^{\infty} a_n$ also diverges to infinity. Indeed, let B > 0. Since t_m diverges to ∞ , there exists $M \in \mathbb{N}$ such that if $m \ge M$, $t_m > B$. Then if $m \ge M$, $s_m \ge t_m > B$, so s_m diverges to ∞ .

Problem 2. Determine whether the series converges or diverges. Prove that your answer is correct using the following tools only: the term test, the comparison test, the ratio test, and the integral test.

(a)
$$\sum_{n=1}^{\infty} \cos(n)$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^8}{n!}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n^3 + 3^n}{5^n}$$

 \propto

Solution.

- (a) We claim that the series *diverges*. Indeed, since $\cos(n)$ does not converge to 0, it diverges by the term test.
- (b) We claim that the series *converges*. Indeed, we use the comparison test with $b_n = \frac{1}{n^2}$. Notice that b_n converges since it is a *p*-series with p > 1, and that $0 < \frac{1}{n^2+1} < \frac{1}{n^2}$. Therefore, by the comparison test, $\frac{1}{n^2+1}$ converges.
- (c) We claim that the series *converges*. We apply the ratio test, which concludes convergence as long as $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$. Notice that

$$\lim_{n \to \infty} \frac{(n+1)^8}{(n+1)!} \cdot \frac{n!}{n^8} = \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^8 \cdot \frac{1}{n+1} = 1 \cdot 0 = 0$$

(d) We claim that the series *converges*. We apply the ratio test, which concludes convergence as long as $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$. Notice that

HOMEWORK 10

$$\lim_{n \to \infty} \frac{(n+1)^3 + 3^{n+1}}{5^{n+1}} \cdot \frac{5^n}{n^3 + 3^n} = \lim_{n \to \infty} \frac{(n+1)^3 / 3^n + 3}{5(n^3 / 3^n + 1)} = \frac{0+3}{5(0+1)} = 3/5.$$

Problem 3. Let $f_n : [a,b] \to \mathbb{R}$ be a sequence of positive functions such that $\sum_{n=1}^{\infty} f_n(0)$ converges, and each f_n is L_n -Lipschitz. Show that if $L = \sum_{n=1}^{\infty} L_n$ converges, then $\sum_{n=1}^{\infty} f_n$ converges uniformly to an *L*-Lipschitz function.

Solution. We claim that for every $x \in [a, b]$, the sequence $\sum_{n=1}^{m} f_n(x)$ is Cauchy. Indeed, fix $\varepsilon > 0$. Choose an N such that $\sum_{n=N}^{\infty} L_n < \frac{\varepsilon}{2(b-a)}$ and $\sum_{n=N}^{\infty} f_n(a) < \varepsilon/2$. Such an N exists since the sequence of partial sums is Cauchy for each sequence. Then if $m_2, m_1 \ge N$,

$$\begin{aligned} \left| \sum_{n=1}^{m_2} f_n(x) - \sum_{n=1}^{m_1} f_n(x) \right| &\leq \left| \sum_{n=m_1+1}^{m_2} f_n(a) + f_n(x) - f_n(a) \right| \\ &\leq \sum_{n=m_1+1}^{\infty} |f_n(a)| + \sum_{n=m_1+1}^{\infty} L_n \left| x - a \right| < \varepsilon/2 + \left| \frac{x-a}{b-a} \right| \cdot \varepsilon/2 < \varepsilon. \end{aligned}$$

Thus, by the topological completeness theorem, for each x, the series $\sum_{n=1}^{\infty} f_n(x)$ converges. Since the choice of N does not depend on x for the Cauchy property, the functions f_n coverge uniformly to a function f. Furthermore,

$$|f(x) - f(y)| = \left| \sum_{n=1}^{\infty} f_n(x) - f_n(y) \right| \le \sum_{n=1}^{\infty} |f_n(x) - f_n(y)| \le \sum_{n=1}^{\infty} L_n |x - y| = L |x - y|.$$

f is L-Lipschitz.

Problem 4. Let $f(x) = xe^x$. Find a number N such that the Taylor approximation of order N is within .1 of f(x) on the interval [0,1]. [*Hint*: First, find and prove a formula for $f^{(k)}(x)$ by induction, then bound $f^{(k)}(x)$ on [0,1] using this formula by a number depending on k]

Solution. We first claim that $f^{(k)}(x) = ke^x + xe^x$. we show it by induction. It holds for k = 0, since $f^{(0)}(x) = f(x) = 0 \cdot e^x + xe^x$. If $f^{(k)}(x) = ke^x + xe^x$, then

$$f^{(k+1)}(x) = (ke^x + xe^x)' = ke^x + (e^x + xe^x) = (k+1)e^x + xe^x.$$

It follows that on [0,1], $f^{(k+1)}x \le (k+1)e$. Hence, the remainder term of the Nth Taylor polynomial is

$$|R_N(x)| = \frac{\left|f^{(N+1)}(c)\right|}{(N+1)!} \cdot |x-0|^{N+1} \le \frac{(N+1)e}{(N+1)!} = \frac{e}{N!}$$

Taking N = 5 yields that $e/5! < 3/(5 \cdot 4 \cdot 3 \cdot 2) = \frac{1}{40} < 1/10$, so the 5th Taylor approximation is within .1 on [0, 1].

 So